GENETIC EVALUATION FOR GLUTATHIONE PEROXIDASE AND PRODUCTIVE PERFORMANCE TRAITS OF CHICKENS

By
Ensaf A. El-Full, Bothaina Y.F. Mahmoud, A. M. R. Osman* and E. M. Omar

Received: 08/04/2010 Accepted: 25/05/2010

Abstract: Prior to study, 17 breeds or strains were screened according to their performance, then ten genotypes of them were chosen to meet all levels of production based on their glutathione peroxidase (GSH-Px) at 56 days of age and two genotypes were chosen showing the highest Rhode Island Red (RIR) and the lowest enzyme activities (Gimmizah). A crossbreeding experiment was carried out between two genotypes of chickens namely RIR as standard foreign breeds and Gimmizah as developed strains. Two crosses were made: RIR x Gimmizah and its reciprocal cross (Gimmizah x RIR dams) to study crossing effects on variance components of the studied traits with an approach to potence ratio. The studied traits were GSH-Px, body weight (BW) at one, 28, 56, 84,112 days of age, 5% and peak of egg production, egg production related traits (age at sexual maturity, ASM, egg number, EN, rate of lay, RL, egg weight, EW and egg mass, EM) and fitness traits.

Samples were taken at previous mentioned ages. Results showed that RIR had higher GSH-Px28, GSH-Px56, GSH-Px84, BW5%, BW112, EN90 and EM90, and EM180 than other genotypes. Whereas, Gimmizah had higher GSH-Px1, GSH-Px5%, EN90 hatchability% and mortality than other groups. RIR x Gimmizah and its reciprocal had lower GSH-Px56, GSH-Px84, EN90, EN180, EM90, EM180 hatchability and mortality% than their parents.

Estimates of direct additive effect were positive and significant for GSH-Px56 and GSH-Px84, BW5%, ASM, EN90, EN180, egg weight (EW), EM90 and EM180. However, a significantly negative direct additive for GSH-Px1 and GSH-Px5% and BW112 were found. All estimates of maternal effects were negative and significant for GSH-Px28 and GSH-Px5%, EN90, EN180, EW, EM90, EM180. Similar trend of negative maternal effect was found for each of fertility, hatchability, except BW112. Estimates of heterotic effect
were significant for most studied traits. Heterosis was negative and significant for each of GSH-Px1, GSH-Px28, GSH-Px56, GSH-Px84 and GSH-Px5%, BW56, EN90, EM90, EM180, fertility, hatchability and mortality. On the other hand, heterosis% was positive and significant for each of BW1, BW112, ASM and EW. Estimates of PR showed that over-dominance for the dominant high parent (RIR) of GSH-Px5%, BW56, EN90, RL, EW, fertility, hatchability, mortality. There were over-dominance effects for the low parent (Gimmizah) of GSH-Px28, GSH-Px56, GSH-Px84 and GSH-PxPeak, BW1, BW84, BWpeak, ASM, EN180, EM180, abnormal chicks%.

In conclusion, RIR was favored as a sire for for GSH-Px56, GSH-Px84, BW5%, and most egg production-related traits studied than Gim.

INTRODUCTION

Antioxidants play an important role in maintaining bird health, productivity and reproductive characteristics against free radicals which are formed as a natural consequence of the body normal metabolic activities and as part of the immune systems strategy for destroying invading microorganisms because of the detrimental effects of free radicals and toxic products of their metabolism on various metabolic processes (Chance et al., 1979). Animals produce free radicals by-product of metabolism that can potentially damage or destroy biological molecules in cells. In this way, free radicals alter tissue proteins and lipids, causing cell damage and death (Özturk-ürek et al., 2001). Therefore, it is worthy to study antioxidants and their relationships with performance traits throughout animal life.

In general, an integrated antioxidant system has been described in avian tissues (Surai, 2002) and it has been suggested that the cells first and second lines of antioxidant defense is based on the activity of glutathione peroxidase (GSH-Px).

The exploitation of genetically diverse stocks for improving economic traits, is one of the approaches in the breeding programs of chickens. Crossing procedures usually lead to better economic performance due to the hybrid vigor to obtain different degrees of heterosis for the goodness and welfare of man by directing the additive and non-additive effects of genes to better performance of the different traits (Hoffmann, 2005).

In many developing countries, the local gene pool still provides the basis for improving the poultry sector. The genetic resource base of the indigenous chickens could form the basis for genetic improvement and diversification to produce breeds adapted to local conditions. However, breeding programs for local chicken will be difficult to set-up because of the
Genetic evaluation, GSH-Px, egg production, fitness traits and potency ratio.

competition with commercial breeding companies which have advantages to technology and economics at large scale.

This work aimed to estimate direct additive, maternal additive, heterotic effects as well as potency ratio for the studied traits in crossbreeding experiment involving RIR and Gimmizah chickens.

MATERIALS AND METHODS

This study was conducted at El-Takamoly Poultry Project at Al-Azab which belongs to Fayoum Governorate during the period from June 2007 to February 2009. Two genotypes were chosen showing the highest (Rhode Island Red, RIR) and the lowest enzyme activities (Gimmizah).

A crossbreeding experiment was carried out between two genotypes of chickens namely RIR as a standard foreign breed and Gimmizah as a developed strain. Two crosses were made: RIR x Gimmizah and its reciprocal cross (Gimmizah x RIR) to study crossing effects on variance components of the studied traits with an approach to potency ratio. All mixed-sex chicks of the chosen genotypes were brooded on floor. All populations were maintained under similar environmental conditions. Birds were subjected to continuous light for the first week of age and then photoperiod was reduced to 16 hours of light/day. Management practices were kept uniform as possible throughout the experimental period.

From hatch to eight weeks of age, all chicks had free access (*ad libitum*) to starter diet containing 18.93% CP and 2797.1 K cal of ME/Kg. From nine weeks to the 18 weeks of age, a grower diet containing 15.05% CP, 2716.7 K cal of ME / Kg, 1.01% calcium and 0.46% available phosphorous was supplied. From 19 weeks to the 22 weeks of age, a pre-layer diet containing 18.05% CP, 2830.0 K cal of ME / Kg, 1.74% calcium and 0.47% available phosphorous was supplied. From 23 weeks to the 62 weeks of age, a layer diet containing 16.07% CP, 2789.0 K cal of ME/Kg diet, 3.22% calcium and 0.42% available phosphorous according to NRC (1994) was used. During the laying period, all females received the same restricted feed (as 105g/bird for native strains and 120g /bird for developed strains) and fresh clean water was adequately supplied.

Egg production-related traits:

Age at sexual maturity (ASM, days) recorded in days at 5% egg production for each flock. Egg number (EN, egg) and egg mass (EM, g) produced during certain periods (90 and 180 days) of egg production were recorded. EM was calculated by multiplying EN by average egg weight.
(EW). Rate of lay (RL, %) during the period from the first egg up to 180 days of egg production was calculated. Mortality%, fertility and hatchability were calculated.

Blood samples:

Four hundred and eighty blood samples were collected from the four genotypes (RIR, Gimmizah, RIR x Gimmizah and Gimmizah x RIR) and ten samples for each sex per each genotype were collected. Samples were taken at one, 28, 56, 84 days of age, at 5% and at peak of egg production. Blood samples were collected at the same time from the wing vein of males and females into tubes containing 200 µL (0.2 mol/L) EDTA as anticoagulant. The red cell stroma removed by centrifuging (4000 rpm x 10 minutes at 4°C). The resulted clarified supernate was collected for use in the assay. The sample was freeze at -70°C before use or stored on ice if will be assayed the same day. RBCs supernate samples were assayed for GSH-Px using UV method.

Statistical analysis:

Data were subjected to one-way analysis of variance to test genotype effect for tested groups using the following model:

\[Y_{ij} = \mu + G_i + e_{ij} \]

where:

- \(Y_{ij} \): observed value in \(i^{th} \) genotype of the \(j^{th} \) individual,
- \(\mu \): common mean,
- \(G_i \): genotype effect and \(e_{ij} \): residual error

Estimation of crossbreeding components

Estimates of direct additive effects, maternal additive effects and direct heterosis for all traits were calculated using the Software Package CBE (Wolf, 1996). Estimates of each component were calculated according to Dickerson (1969 and 1973) as follows:

Direct additive effects:

\[\frac{1}{2} [(\text{RIR} \times \text{RIR} - \text{GIMMIZAH} \times \text{GIMMIZAH}) - (\text{GIMMIZAH} \times \text{RIR} - \text{RIR} \times \text{GIMMIZAH})]. \]

Maternal additive effects:

\[\frac{1}{2} [(\text{GIMMIZAH} \times \text{RIR} - \text{RIR} \times \text{GIMMIZAH})]. \]

Direct heterosis:

\[\frac{1}{2} [(\text{RIR} \times \text{GIMMIZAH} + \text{GIMMIZAH} \times \text{RIR}) - (\text{RIR} \times \text{RIR} + \text{GIMMIZAH} \times \text{GIMMIZAH})]. \]
Genetic evaluation, GSH-Px, egg production, fitness traits and potence ratio.

Heterosis:

Heterosis was calculated as the difference between the cross and mid-parent means. Reciprocal effect is the difference between the crosses of two parental breeds in which their roles as male or female parents are reversed.

Potence ratio (PR):

PR based on the mid-parents (MP) were determined according to equations given by Griffing (1950) as follows:

\[
PR = \frac{F_1 - MP}{\frac{1}{2}(P_1 - P_2)}
\]

where:

\(F_1\) = mean of crosses
\(MP\) = mid-parents
\(P_1\) = mean of the first parent
\(P_2\) = mean of the second parent

PR was used to interpret the degree of dominance of one parent on the other, since the mean of \(F_1\) crosses were very close to the mean of the dominant parent. Mather and Jinks (1982) reported that when PR values were around zero, \(-1 < PR < +1\), equal \(+1\) or \(-1\) and \(-1 > PR > +1\), these values mean that the degrees of dominance were: no dominance, partial dominance, complete dominance and over dominance for the (dominant) high parent of the traits, respectively. The corresponding negative values of PR mean no dominance, partial dominance, complete dominance and over dominance for the low parent of the traits studied.

RESULTS AND DISCUSSION

Genotype effect:

Means presented in tables 1 to 3 showed that each of GSH-Px, BW's, ASM, EN_90, EN_180, EW, EM_90, EM_180, hatchability% and mortality_1-365% were affected by different genotypes. There were significant differences for GSH-Px among genotypes from one day to peak of egg production RIR had higher GSH-Px than other genotypes. Similarly, significant genotype effects for BW were reported by Nawar et al. (2004), Aly and Abou El-Ella (2006), Amin (2007), Roshdy et al. (2007), Amin (2008 a and b) and Iraqi (2008).

Whereas, Gimmizah had higher GSH-Px, GSH-Px_5% (Table 1), EN_90, hatchability% and mortality (Table 3) than other groups. RIR x Gimmizah and
its reciprocal had lower GSH-Px56, GSH-Px84 (Table 1), EN90, EN180, EM90, EM180, hatchability and mortality% (Table 3) than their parents. El-Soudany (2003) and Iraqi (2008) found higher EN for some studied crosses than one or both parents. Similar trend for EM during different periods of egg production was shown by El-Soudany (2003), Amin (2008a), Amin (2008b) and Iraqi (2002). The results of hatchability are in contradiction to those reported by El-Soudany (2003), Amin (2008a) that studied crosses had higher hatchability than their parents. Similar trend for mortality was shown by Nawar and Abdou (1999). On the contrary, Amin (2008a) found that studied crosses had lower mortality than their parents.

Similarly, Gimmizah x RIR had lower GSH-Px5% (Table 1) and BW84 (Table 2) than its parents. On the other hand, RIR x Gimmizah and its reciprocal had higher GSH-PxPeak (Table 1), BW1, BW112 (Table 2) and ASM (Table 3) than their parents. These results were in agreement with those reported by Shaaban et al. (2008) that the cross and its reciprocal had lower GSH-Px estimates than their parents. On the contrary, Shaaban et al. (2004) reported that the crosses had higher GSH-Px than one or both parents. The results of BW are in harmony with those reported by (Amin) 2007 that some of the studied crosses showed lower BW than one of their parents. The results of ASM in this study are in contradiction to those reported by El-Soudany (2003), Amin (2008a) and Iraqi (2008) that some of the studied crosses had earlier ASM than one or both parents. The RIR x Gimmizah cross had higher EW than their parents, this result is confirmed by those reported by Iraqi (2002), El-Soudany (2003), Amin (2008a) and Ghanem et al.(2008) that some crosses studied had heavier EW than one or both parents.

Parent difference:

Estimates of parent differences were significant for most studied traits except GSH-Px28, GSH-Px peak (Table 1), BW1, BW56, BW84 and BWpeak (Table 2). Whereas, estimates of parent differences were insignificant for egg production–related traits, fitness traits and abnormal chick but ASM, RL ASM–180days and EW were significant (Table 3) The RIR had higher GSH-Px56, GSH-Px84 (Table 1), BW5% (Table 2), ASM and EW(Table 3) than Gimmizah. However, Gimmizah was significantly superior in GSH-Px1, GSH-Px5% (Table 1), BW28 and BW112 (Table 2) and had higher RL ASM–180days (Table 3) than RIR.

Cross difference:

Estimates of cross difference were significant for most studied traits indicating that the RIR x Gimmizah cross was significantly superior in GSH-Px28, GSH-Px5%, GSH-PxPeak (Table 1), BW84, BW5% (Table 2),
Genetic evaluation, GSH-Px, egg production, fitness traits and potency ratio.

EN\textsubscript{90}, EN\textsubscript{180}, EW, EM\textsubscript{90} and EM\textsubscript{180} (Table 3) than Gimmizah x RIR cross. Generally, birds having higher BW at sexual maturity produced more eggs than those having relatively lower BW (Mitra et al., 1976). On the other hand, the Gimmizah x RIR cross was significantly superior than RIR x Gimmizah cross for GSH-Px\textsubscript{1}, GSH-Px\textsubscript{56} and GSH-Px\textsubscript{84} (Table 1), BW\textsubscript{112} (Table 2) and abnormal chicks\% (Table 3) than its reciprocal.

Direct additive effects:

Estimates of direct additive effects indicated that some estimates were positive and highly significant for GSH-Px\textsubscript{56} and GSH-Px\textsubscript{84} being 204.88 and 269.66 respectively (Table 4), BW\textsubscript{5\%} was significant being 193.75 as shown in (Table 5). However, ASM, EN\textsubscript{90}, EN\textsubscript{180}, EW, EM\textsubscript{90} and EM\textsubscript{180} were highly significant being 2.00, 4.93, 10.45, 1.91, 342.86 and 677.14, respectively (Table 6). However, a highly significantly negative direct additive effects for GSH-Px\textsubscript{1} and GSH-Px\textsubscript{5\%} being -159.84 and -117.73 (Table 4) and BW\textsubscript{112} (P≤0.01, -61.50, Table 5). The results of additive effects for BW\textsubscript{112} in the present study are in accordance with those reported by Aly and Abou El-Ella (2006) also found that additive effect for BW\textsubscript{112} was negative. Nawar and Abdou (1999) showed that additive effect\% for BW at sexual maturity was positive when they crossed RIR sires to Fayoumi dam.

Similarly, the reported additive effect\% of BW at sexual maturity was positive and highly significant for each of White Leghorn x Saudi chickens (Khalil et al., 2004), RIR (Iraqi et al., 2007) and Mandarah x Matroh (Iraqi, 2008), while it was negative in Fayoumi chickens as reported by Iraqi et al. (2007). The results of additive effect for ASM in the present study are confirmed with those reported by Nawar and Abdou (1999) that additive effect\% for ASM was positive. On the other hand, additive effect\% was negatively influenced ASM as reported by Khalil et al. (2004), Iraqi et al. (2007) for Fayoumi and WL breeds. The results for additive effect of EN in this study are in accordance with those reported by Ghanem et al. (2008) that additive effects were positive for EN during 84 and 247 days of production when crossed Matroh sires to Silver Montazah (SM) dams. Similarly, Iraqi (2008) showed that additive effects\% were positive for EN during 84 and 210 days of production. Negative trend was reported by Ghanem et al. (2008) for that trait during 84 and 247 days of production when they crossed Matroh x Inshas and Matroh x Mandarah.

The results for additive effect\% of EW in this study are confirmed by those reported by Nawar and Abdou (1999) and Iraqi (2002) that additive effect\% for EW were positive. Similar trend was obtained by

Ghanem et al. (2008) in the cross of Matroh x SM and Matroh x Mandarah for this trait. Similar positive trend for additive effect % of EM\textsubscript{90} in the present study is confirmed by Nawar and Abdou (1999) and Iraqi (2008).

Maternal additive effects

All estimates of maternal effects were negative and highly significant for GSH-Px\textsubscript{28} and GSH-Px\textsubscript{5%} (-26.00 and -78.67) as shown in (Table 4). Also, EN\textsubscript{90}, EN\textsubscript{180}, EW, EM\textsubscript{90}, EM\textsubscript{180} were highly significant being -4.96, -10.09, -1.64, -336.82 and -671.86, respectively as shown in (Table 6). Similar trend of negative maternal effect was found for each of fertility (-1.78, P≤0.05), hatchability (P≤0.01, -1.94) as shown in Table 6, whereas the BW\textsubscript{112} was 34.25 at P≤0.01(Table 5). Aly and Abou El-Ella (2006) reported similar trend of negative maternal effect for BW\textsubscript{112}. The results of maternal effect% in the present study for ASM are in harmony with the negative maternal effect % of this trait reported by Iraqi et al. (2007) for Dand chickens. Conversely, Khalil et al. (2004) reported positive maternal effect% for ASM in the cross of WL x BB Saudi chickens. Also, Iraqi (2008) found insignificant positive maternal effect% for ASM.

Negative maternal effect% for both EN\textsubscript{90} and EM\textsubscript{90} in the present study are confirmed by those reported by Iraqi (2008) being-4.65% and -3.86. Similarly, Nawar and Abdou (1999) found that the maternal effect% for EW was negative when they crossed RIR sires and Fayoumi dams. On the other hand, Iraqi (2002) reported positive maternal effect% for EW. Similar positive trend of maternal effect for EW at 90 days of production was reported for Matroh x SM and Matroh x Inshas crosses by Ghanem et al. (2008). Similarly, Nawar and Abdou (1999) reported that maternal effect% for EM at 84 days of production and hatchability were positive whereas fertility was negative.

Heterotic effects:

Estimates of heterotic effects were significant for most studied traits. Heterosis was negative and significant for each of GSH-Px\textsubscript{1}, GSH-Px\textsubscript{28}, GSH-Px\textsubscript{56}, GSH-Px\textsubscript{84} and GSH-Px\textsubscript{5%}, BW\textsubscript{84}, EN\textsubscript{90}, EN\textsubscript{180}, EM\textsubscript{90}, EM\textsubscript{180}, fertility, hatchability and mortality (-127.26, -425.40, -563.53, -651.76, -656.62 in Table 4, -120.72 in Table 5, -12.17, -24.71, -430.31, -865.42, -6.10, -7.38 and -0.79 at P≤0.01, respectively in Table 6). On the other hand, heterosis% was positive and significant for each of BW\textsubscript{1}, BW\textsubscript{112}, ASM and EW (2.88 and 91.50 in Table 5, 12.99 and 3.04 at P≤0.01 in Table 6). Several authors reported that heterosis% was positive for BW\textsubscript{i} (Aly and Abou El-Ella, 2006 and Amin, 2007), BW\textsubscript{84} days of age (Aly and Abou El-Ella, 2006 and Amin, 2007), BW\textsubscript{112} days of age (El-Soudany, 490
Genetic evaluation, GSH-Px, egg production, fitness traits and potence ratio.

2003 and Amin, 2007), ASM (Amin, 2008a), EW (El-Soudany, 2003 and Amin, 2008b), EN (El-Soudany, 2003 and Iraqi, 2008), EM (El-Soudany, 2003 and Iraqi, 2008). On the other hand, many investigators reported that heterosis% was negative for BW1 and BW112 (Aly and Abou El-Ella, 2006), ASM (El-Soudany, 2003) EW (El-Soudany, 2003 and Ghanem et al., 2008), fertility, hatchability (El-Soudany, 2003, Aly and El-Sahn, 2006 and Amin, 2008a), mortality (Amin, 2007 and 2008b). When offspring are considered to be better, or more fit for survival than their parents, positive heterotic effects in the first generation may have resulted from two possible causes: Firstly, direct individual heterosis which resulted from uniting pairs of somatic genes (Sheridan, 1981) and secondly the intra or inter allelic interactions (Dickerson, 1992).

Potence ratio:

Estimates of PR are presented in Tables from 4 to 6 indicated that these estimates ranging from -161.83 to 304.25. Estimates of PR showed that over-dominance were shown for the dominant high parent (RIR) of GSH-Px5%, BW56, EN90, RL, EW, fertility, hatchability, mortality being 3.34 (Table 4), 2.08 (Table 5), 304.25, 87.81, 11.26, 22.18, 13.92 and 158, respectively (Table 6). Similar trend of over-dominance PR for BW56 of Gimmizah x Bandarah was reported by Aly et al. (2005) for Kosmos x GM and Mandarah x Kosmos crosses (Amin, 2007). However, Amin (2007) reported partial to over-dominance for the low parent of the same trait for Kosmos x Mandarah, Mandarah x GM, GM x Kosmos and GM x Mandarah crosses.

There were over-dominance effects for the low parent (Gimmizah) of GSH-Px28, GSH-Px56, GSH-Px84 and GSH-PxPeak. BW1, BW84, BWpeak, ASM, EN180, EM180, abnormal chicks%, (-22.90, -2.44, -2.24, -4.69 in Table 4, -4.97, -3.71, -51.00 in Table 5, -23.50, -68.67, -161.83 and -2.93 in Table 6, respectively). Similar trends of over-dominance for the low parent for both BW1 of Mandarah x GM, GM x Kosmos and GM x Mandarah crosses and BW84 of Kosmos x GM, Mandarah x GM and Mandarah x Kosmos crosses were reported by Amin (2007). However, there was over-dominance for BW1 for the Gimmizah x Bandarah cross (Aly et al., 2005). Partial dominance for RIR parent was shown in GSH-Px1, BW28 and BW5% being 0.95 in Table 4, 0.46 and 0.62 in Table 5, respectively. Similar trend of partial dominance for the high parent for BW28 of Gimmizah x Bandarah cross (Aly et al., 2005) and Kosmos x GM cross was reported by Amin (2007). On the other hand, there were partial dominance of BW28 for the low parent of Bandarah x Gimmizah cross (Aly et al., 2005), for Mandarah.
x Kosmos and GM x Kosmos crosses as reported by Amin (2007). There were no dominance in BW

In conclusion, RIR was favored as a sire for GSH-Px56, GSH-Px84, BW5%, and most egg production-related traits studied than Gim.
Genetic evaluation, GSH-Px, egg production, fitness traits and potence ratio.

Table (3) Heterosis percentages from mid parent (MP) and high parent (HP) for some egg production traits

<table>
<thead>
<tr>
<th>Crosses</th>
<th>Traits</th>
<th>ASM</th>
<th>BW</th>
<th>EN1</th>
<th>EW1</th>
<th>EN2</th>
<th>EW2</th>
<th>EN3</th>
<th>EW3</th>
<th>EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Crosses</td>
<td></td>
</tr>
<tr>
<td>H% (MP)</td>
<td></td>
<td>5.4</td>
<td>-0.02</td>
<td>-21</td>
<td>-0.8</td>
<td>6</td>
<td>-17.0</td>
<td>19</td>
<td>-1.3</td>
<td>15.4</td>
</tr>
<tr>
<td>H% (HP)</td>
<td></td>
<td>19.3</td>
<td>-8.9</td>
<td>-33</td>
<td>-14.3</td>
<td>-10</td>
<td>-12.9</td>
<td>-3</td>
<td>-11.9</td>
<td>-15.3</td>
</tr>
<tr>
<td>MxLB</td>
<td></td>
</tr>
<tr>
<td>H% (MP)</td>
<td></td>
<td>8.5</td>
<td>-0.6</td>
<td>-16</td>
<td>-6.7</td>
<td>-5</td>
<td>-5.4</td>
<td>6</td>
<td>-3.9</td>
<td>0.2</td>
</tr>
<tr>
<td>H% (HP)</td>
<td></td>
<td>19.2</td>
<td>-8.1</td>
<td>-29</td>
<td>-16.3</td>
<td>-17</td>
<td>-13.7</td>
<td>-11</td>
<td>-11.8</td>
<td>-21.9</td>
</tr>
<tr>
<td>SMxLB</td>
<td></td>
</tr>
<tr>
<td>H% (MP)</td>
<td></td>
<td>8.6</td>
<td>-4.1</td>
<td>-32</td>
<td>-2.4</td>
<td>8</td>
<td>-4.1</td>
<td>18</td>
<td>-4.5</td>
<td>11.1</td>
</tr>
<tr>
<td>H% (HP)</td>
<td></td>
<td>19.4</td>
<td>-9.7</td>
<td>-38</td>
<td>-12.4</td>
<td>-2</td>
<td>-12.0</td>
<td>4</td>
<td>-12.0</td>
<td>-8.6</td>
</tr>
<tr>
<td>3-way Crosses</td>
<td></td>
</tr>
<tr>
<td>H% (MP)</td>
<td></td>
<td>-11.5</td>
<td>-6.1</td>
<td>53</td>
<td>-3.3</td>
<td>19</td>
<td>-1.5</td>
<td>18</td>
<td>-2.6</td>
<td>14.7</td>
</tr>
<tr>
<td>H% (HP)</td>
<td></td>
<td>-0.1</td>
<td>-11.6</td>
<td>19</td>
<td>-12.5</td>
<td>17</td>
<td>-10.0</td>
<td>15</td>
<td>-10.3</td>
<td>3.1</td>
</tr>
<tr>
<td>MxSMxLB</td>
<td></td>
</tr>
<tr>
<td>H% (MP)</td>
<td></td>
<td>-8.0</td>
<td>-5.6</td>
<td>30</td>
<td>-2.4</td>
<td>17</td>
<td>-2.1</td>
<td>19</td>
<td>-4.5</td>
<td>12.7</td>
</tr>
<tr>
<td>H% (HP)</td>
<td></td>
<td>0.8</td>
<td>-9.4</td>
<td>12</td>
<td>-10.4</td>
<td>7</td>
<td>-8.8</td>
<td>12</td>
<td>-10.1</td>
<td>0.3</td>
</tr>
<tr>
<td>SMxMxLB</td>
<td></td>
</tr>
<tr>
<td>H% (MP)</td>
<td></td>
<td>-9.7</td>
<td>-9.4</td>
<td>56</td>
<td>-9.1</td>
<td>17</td>
<td>-5.5</td>
<td>16</td>
<td>-4.9</td>
<td>10.6</td>
</tr>
<tr>
<td>H% (HP)</td>
<td></td>
<td>-1.0</td>
<td>-13.8</td>
<td>26</td>
<td>-14.7</td>
<td>16</td>
<td>-11.2</td>
<td>19</td>
<td>-10.6</td>
<td>5.8</td>
</tr>
</tbody>
</table>

ASM = age at sexual maturity, BW = Body weight at sexual maturity, EN1 = Egg number at the 1st 90 d. of laying, EW1 = Egg weight at the 1st 90 d. of laying, EN2 = Egg number at 240 d. of laying, EW2 = Egg weight at 240 d. of laying, EN3 = Egg number at 52 wks. of laying, EW3 = Egg weight at 52 wks. of laying, EM = Egg mass at 52 wks. of laying, LB = the commercial laying hens Lohman Brown, Mn = Mandarah strain, SM = Silver Montazah strain, S.C = single 3-way = 3-way crosses, (MP) = mid parent, (HP)= high parent (LB), H% = Heterosis percentages
Table 2. Means ± SE for BW, parent and cross differences at different ages.

<table>
<thead>
<tr>
<th>Trait</th>
<th>RIR</th>
<th>Gimmizah</th>
<th>RIRx Gimmizah</th>
<th>Gimmizah x RIR</th>
<th>Parent difference</th>
<th>Cross difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW1</td>
<td>31.99±1.08b</td>
<td>33.15±0.66ab</td>
<td>35.36±0.83a</td>
<td>35.55±0.79a</td>
<td>-1.16NS</td>
<td>-0.19NS</td>
</tr>
<tr>
<td>BW28</td>
<td>247.5±6.76a</td>
<td>277.5±11.17a</td>
<td>256.3±8.60a</td>
<td>255.05±8.4a</td>
<td>-30.00*</td>
<td>1.25NS</td>
</tr>
<tr>
<td>BW56</td>
<td>615±22.40a</td>
<td>657.5±17.50a</td>
<td>597.65±26.10a</td>
<td>586.35±32.14a</td>
<td>-42.5NS</td>
<td>11.30NS</td>
</tr>
<tr>
<td>BW84</td>
<td>1125±49.02a</td>
<td>1060±36.75ab</td>
<td>996.95±47.25ab</td>
<td>946.6±49.89b</td>
<td>650NS</td>
<td>50.35*</td>
</tr>
<tr>
<td>BW112</td>
<td>1417±1.99d</td>
<td>1471.5±1.50c</td>
<td>1501.5±1.50b</td>
<td>1570±1.06a</td>
<td>-54.50**</td>
<td>-68.50**</td>
</tr>
<tr>
<td>BW5%</td>
<td>1942.5±89.64a</td>
<td>1630±59.67b</td>
<td>1920±102.09a</td>
<td>1845±88.37ab</td>
<td>312.5**</td>
<td>75.00*</td>
</tr>
<tr>
<td>BWPeak</td>
<td>2108.75±90.18a</td>
<td>2107.5±99.73a</td>
<td>2060±90.34a</td>
<td>2092.5±85.28a</td>
<td>1.25NS</td>
<td>32.50NS</td>
</tr>
</tbody>
</table>

Means having different superscripts within each row are significantly different (P≤0.05).
NS: Not significant, *: Significant at P≤0.05, **: Significant at P≤0.01 and ***: Significant at P≤0.001
Genetic evaluation, GSH-Px, egg production, fitness traits and potentia ratio.

Table 3. Means ± SE for egg production–related traits, fitness traits and abnormal chick of the tested genotypes

<table>
<thead>
<tr>
<th>Trait</th>
<th>RIR</th>
<th>Gimmizah</th>
<th>RIR x Gimmizah</th>
<th>Gimmizah x RIR</th>
<th>Parent difference</th>
<th>Cross difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASM, day</td>
<td>126.00±0.49c</td>
<td>122.00±0.49b</td>
<td>137.00±0.49a</td>
<td>137.00±0.49a</td>
<td>4.00a</td>
<td>0.00NS</td>
</tr>
<tr>
<td>EN90, egg</td>
<td>58.37±0.25a</td>
<td>58.45±0.22a</td>
<td>51.21±0.10a</td>
<td>41.27±0.13b</td>
<td>-0.08**</td>
<td>10.00**</td>
</tr>
<tr>
<td>EN180, egg</td>
<td>116.72±0.36a</td>
<td>116.00±0.25a</td>
<td>101.73±0.37b</td>
<td>81.55±0.28b</td>
<td>0.72**</td>
<td>20.18</td>
</tr>
<tr>
<td>RL% ASM-180days</td>
<td>65.25±7.45a</td>
<td>65.56±4.25a</td>
<td>57.47±8.03a</td>
<td>46.15±11.34a</td>
<td>-0.31</td>
<td>11.32NS</td>
</tr>
<tr>
<td>EW, gm</td>
<td>48.24±0.85b</td>
<td>47.70±0.85b</td>
<td>52.65±0.74a</td>
<td>49.37±0.74a</td>
<td>0.46</td>
<td>3.28**</td>
</tr>
<tr>
<td>EM90, gm</td>
<td>2818.57±0.28a</td>
<td>2806.5±0.25b</td>
<td>2719.05±0.1c</td>
<td>2045.40±0.20d</td>
<td>12.07**</td>
<td>673.65***</td>
</tr>
<tr>
<td>EM180, gm</td>
<td>5639.60±0.30a</td>
<td>5628.90±0.45b</td>
<td>5440.60±0.30f</td>
<td>4096.87±0.44a</td>
<td>10.70**</td>
<td>1343.73***</td>
</tr>
<tr>
<td>Fertility%</td>
<td>89.82±2.13a</td>
<td>90.37±2.98a</td>
<td>85.77±1.44a</td>
<td>82.22±0.8a</td>
<td>-0.55**</td>
<td>3.55**</td>
</tr>
<tr>
<td>Hatchability%</td>
<td>85.9±1.86a</td>
<td>86.96±3.11a</td>
<td>80.99±1.45ab</td>
<td>77.11±0.44a</td>
<td>-1.06**</td>
<td>3.88**</td>
</tr>
<tr>
<td>Mortality1-365%</td>
<td>0.79±0.25a</td>
<td>0.80±0.25a</td>
<td>0.004±0.02b</td>
<td>0.005±0.003b</td>
<td>-0.01**</td>
<td>-0.002**</td>
</tr>
<tr>
<td>Abnormal chicks%</td>
<td>1.81±0.77a</td>
<td>1.43±0.61a</td>
<td>1.00±0.58a</td>
<td>1.33±0.77a</td>
<td>0.38**</td>
<td>-0.33</td>
</tr>
</tbody>
</table>

Means having different superscripts within each row are significantly different (P≤0.05).
NS: Not significant, *, Significant at P≤0.05, **, Significant at P≤0.01 and ***, Significant at P≤0.001
Table 4. Estimates of direct additive, maternal additive, heterotic effects and PR for GSH-Px at different ages

<table>
<thead>
<tr>
<th>Trait</th>
<th>Additive effects ±Sd</th>
<th>Maternal effects ±Sd</th>
<th>Heterotic effects ± Sd</th>
<th>PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSH-Px1</td>
<td>-159.84±17.78**</td>
<td>27.94±15.21**</td>
<td>-127.26±17.78**</td>
<td>0.95</td>
</tr>
<tr>
<td>GSH-Px28</td>
<td>44.58±27.07**</td>
<td>-26.00±8.19**</td>
<td>-425.40±27.07**</td>
<td>-22.9</td>
</tr>
<tr>
<td>GSH-Px56</td>
<td>204.88±29.60**</td>
<td>25.88±23.67**</td>
<td>-563.53±29.60**</td>
<td>-2.44</td>
</tr>
<tr>
<td>GSH-Px84</td>
<td>269.66±38.59**</td>
<td>21.46±13.26**</td>
<td>-656.62±38.59**</td>
<td>-2.24</td>
</tr>
<tr>
<td>GSH-PxPeak</td>
<td>-117.73±37.09**</td>
<td>-78.67±21.74**</td>
<td>-656.62±37.09**</td>
<td>3.34</td>
</tr>
</tbody>
</table>

NS: Not significant, *: Significant at P≤0.05, **: Significant at P≤0.01 and ***: Significant at P≤0.001

Table 5. Estimates of direct additive, maternal additive, heterotic effects and PR for BW at different ages

<table>
<thead>
<tr>
<th>Trait</th>
<th>Additive effects ±Sd</th>
<th>Maternal effects ±Sd</th>
<th>Heterotic effects ± Sd</th>
<th>PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW1</td>
<td>-0.68±0.85 NS</td>
<td>0.09±0.57 NS</td>
<td>2.88±0.85**</td>
<td>-4.97</td>
</tr>
<tr>
<td>BW28</td>
<td>-14.36±8.87 NS</td>
<td>-0.62±6.01 NS</td>
<td>-6.82±8.87 NS</td>
<td>0.46</td>
</tr>
<tr>
<td>BW56</td>
<td>-15.62±25.16 NS</td>
<td>-5.65±20.76 NS</td>
<td>-44.24±25.16 NS</td>
<td>2.08</td>
</tr>
<tr>
<td>BW84</td>
<td>57.67±46.03</td>
<td>-25.17±34.35 NS</td>
<td>-120.72±46.03 NS</td>
<td>-2.24</td>
</tr>
<tr>
<td>BWPeak</td>
<td>193.75±86.35</td>
<td>-25.17±34.35 NS</td>
<td>-120.72±46.03 NS</td>
<td>0.62</td>
</tr>
</tbody>
</table>

NS: Not significant, *: Significant at P≤0.05, **: Significant at P≤0.01 and ***: Significant at P≤0.001

Table 6. Estimates of direct additive, maternal additive, heterotic effects and PR egg production-related and fitness traits

<table>
<thead>
<tr>
<th>Trait</th>
<th>Additive effects ±Sd</th>
<th>Maternal effects ±Sd</th>
<th>Heterotic effects ± Sd</th>
<th>PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASM</td>
<td>2.00±0.49**</td>
<td>-0.1E 5±0.35 NS</td>
<td>12.99±0.49**</td>
<td>-23.50</td>
</tr>
<tr>
<td>EN50</td>
<td>4.93±0.43**</td>
<td>-4.96±0.28**</td>
<td>-12.17±0.43**</td>
<td>304.25</td>
</tr>
<tr>
<td>EN100</td>
<td>10.45±1.57**</td>
<td>-10.09±1.16**</td>
<td>-24.71±1.57**</td>
<td>-68.67</td>
</tr>
<tr>
<td>RL% ASM 100 day</td>
<td>5.51±8.16 NS</td>
<td>-5.66±6.95 NS</td>
<td>-13.59±8.16 NS</td>
<td>87.81</td>
</tr>
<tr>
<td>EW</td>
<td>1.91±0.76**</td>
<td>-1.64±0.47**</td>
<td>3.04±0.76**</td>
<td>11.26</td>
</tr>
<tr>
<td>EM 90</td>
<td>342.86±9.68**</td>
<td>-336.82±3.37**</td>
<td>-430.31±9.68**</td>
<td>-60.66</td>
</tr>
<tr>
<td>EM 180</td>
<td>677.14±4.73**</td>
<td>-671.86±4.16**</td>
<td>-865.42±4.73**</td>
<td>-161.83</td>
</tr>
<tr>
<td>Fertility%</td>
<td>1.59±2.01 NS</td>
<td>-1.78±0.82</td>
<td>-6.14±0.11**</td>
<td>22.18</td>
</tr>
<tr>
<td>Hatchability%</td>
<td>1.41±1.96 NS</td>
<td>-1.94±0.75**</td>
<td>-7.38±1.96**</td>
<td>13.92</td>
</tr>
<tr>
<td>Mortality%44days</td>
<td>0.004±0.18 NS</td>
<td>0.0009±0.01 NS</td>
<td>-0.79±0.18**</td>
<td>158</td>
</tr>
<tr>
<td>Abnormal chicks%</td>
<td>0.02±0.67 NS</td>
<td>0.17±0.48 NS</td>
<td>-0.46±0.67 NS</td>
<td>-2.93</td>
</tr>
</tbody>
</table>

NS: Not significant, *: Significant at P≤0.05, **: Significant at P≤0.01 and ***: Significant at P≤0.001
Genetic evaluation, GSH-Px, egg production, fitness traits and potence ratio.

REFERENCE

Genetic evaluation, GSH-Px, egg production, fitness traits and potency ratio.

الملخص العربي
قبل الدراسة تم تسجيل 17 نوع و سلالة تعاود انتاجها التاسم جزء من دراسة تم تطبيقه و أثره في كرات الدم الحمراء و ورق الجسم. تم اختبار تركيب الوراثتيات الذين أظهرت أعلا (الوراث الجنسي) و فحص خلط بين الوراث الجنسي و الأحمر (الثاني) و أثار (الثاني) فحص الخصائص لهما لدراسة تأثير المكونات النباتية على الصدف المدرسة و نشاط الجلولاثين بروكسيديز و وزن الجسم عند أسعار يوم 7، 25، 56، 84 يوم، عند 5% و قمة انتاج البيض والصدف المرتبطة
بنتاج البيض و الصدف المتوقفة.

كانت قيم التأثيرات الإضافية المباشرة موجبة ومعنوية لصعح نشاط الأحمر عند 6، 84 يوم، وزن الجسم عند 5% من انتاج البيض و العمر عند النضج الجنسي و عدد البيض خلال 90 و 180 يوم. ولكنها كانت عادية المعنوية و سلبية لنشاط الأحمر عند عمر يوم 7، 5% من انتاج البيض، وزن الجسم عند 112 يوم. كانت التأثيرات الإضافية المثيرة للصدف معنوية و عادية المعنوية لنشاط الأحمر عند عمر 28 و 5% من انتاج البيض و عدد البيض خلال 90 و 180 يوم و وزن البيضة و كتلة البيضة عند 90 و 180 يوم. وكانت قيمة الزيت معنوية لجميع الصدف المدرسة و كانت سلبية و معنوية لصعح نشاط الأحمر في الأعمر يوم 28 و 56 و 84 يوم و عدد 5% من الناتج وكذلك وزن الجسم عند 84 يوم و عدد البيض خلال 90 و 180 يوم و كتلة البيضة عند 180 يوم و نسبة كل من الخصوبة والفقس و الفوق. على الجانب الآخر كانت Moyge و عادية المعنوية لوزن الجسم عند 112 يوم و عدد وصل العصر الخلايا و وزن البيضة.

قمة النشاط وأظهرت سلامة فاتحة لأنهاب (الوراث الجنسي) لنشاط الأحمر عند 5% من انتاج البيض و وزن الجسم عند 56 و يوم عدد البيض خلال 90 و نسبة انتاج البيض و وزن البيضة و نسبة كل من الخصوبة والفقس و الفوق. وجدت سلامة فاتحة لأنهاب (الثاني) لنشاط الأحمر عند الأعمر 28، 56، 84، 84 يوم انتاج البيض، وزن الجسم عند عمر يوم 7، 5% من انتاج البيض و العمر عند النضج الجنسي و عدد البيض خلال 180 يوم و كتلة البيضة عند 180 يوم و وصل العصر و وزن الجسم عند 112 يوم.

ملاحظ من هذا أنه الأحمر الأحمر كان الأفضل بالنسبة لصدف نشاط الأحمر عند 56 و يوم و 84 و يوم و 5% من انتاج البيض وكذلك في معظم الصدف المتعلقة بنتج البيض المدرسة عن الجمزة.